Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model.

نویسنده

  • C B Lindemann
چکیده

The flagella of mammalian sperm possess certain structural characteristics that distinguish them from simple flagella. Most notable of these features are the sheath (surrounding the axoneme), the outer dense fibers of ODFs (that are attached to the outer doublets), and the connecting piece (which anchors the ODFs at the base of the flagellum). In this study, the significance of these specialized axonemal elements is explored. Their impact on microtubule sliding and force production within the axoneme is specifically analyzed. A working hypothesis is developed based on the premise that forces produced by interdoublet sliding are transferred to the ODFs. In this way, the torque required to bend the flagellum is developed between the ODFs, which are anchored in the connecting piece. This working hypothesis was incorporated into the pre-existing "geometric clutch" model that earlier simulated only cilia and simple flagella. The characteristic length and stiffness of bovine sperm flagella were specified as modelling parameters. Additionally, the inter-ODF spacing of bull sperm was incorporated to calculate doublet sliding and bending torque. The resultant computer-simulated pattern of flagellar beating possesses many of the attributes of the beat of a live bull sperm flagellum. Notably, this life-like simulation can be produced using parameters for the central axonemal "motor" that are comparable to those effective in modelling a simple flagellum. In the proposed scheme, the accessory structures of the mammalian sperm axoneme provide increased stiffness while at the same time providing a means to proportionately raise the bending torque to overcome that additional flexural rigidity. This capacity is due to the inter-ODF distances being larger than the corresponding interdoublet spacings. If force is transmitted to the flagellar base by way of the ODFs, then the larger effective diameter generates both a greater bending torque and increased interdoublet sliding. This has the interesting effect of consolidating the energy from more dynein cross-bridges into the production of a single bend. Consequently. greater bending torque development is permitted than would be possible in a simple flagellum. In This way, the same 9 + 2 organization of a simple flagellum can power a much larger (and stiffer) version than would otherwise be possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flagellar arrest behavior predicted by the Geometric Clutch model is confirmed experimentally by micromanipulation experiments on reactivated bull sperm.

The central tenet of the Geometric Clutch hypothesis of flagellar beating is that the internal force transverse to the outer doublets (t-force) mediates the initiation and termination of episodes of dynein engagement. Therefore, if the development of an adequate t-force is prevented, then the dynein-switching necessary to complete a cycle of beating should fail. The dominant component of the t-...

متن کامل

O-10: Formation and Molecular Composition of The Sperm Head to Tail Coupling Apparatus

Background According to a worldwide survey in 2010 infertility affects 48.5 million of couples. In roughly half of the cases infertility is provoked by the male mate. Thus, a significant percentage of young men are infertile but the underlying causes are mostly unknown. Male fertility and reproduction success critically depends on proper formation of the mature sperm. Transmission of the geneti...

متن کامل

Testing the geometric clutch hypothesis.

The Geometric Clutch hypothesis is based on the premise that transverse forces (t-forces) acting on the outer doublets of the eukaryotic axoneme coordinate the action of the dynein motors to produce flagellar and ciliary beating. T-forces result from tension and compression on the outer doublets when a bend is present on the flagellum or cilium. The t-force acts to pry the doublets apart in an ...

متن کامل

Delamination Analysis in Composite Root of a Carbon-Layer Reinforced Wind Turbine Blade

The inconsistencies accompanied with material properties tipically cause the rise of delamination risk in composites made of different types of glass and crabon fibers. In this study, the delamination of a composite beam reinforced with a carbon layer under bending load is investigated. To this end, a small piece of a wind turbine blade root in the form of a heterogeneous laminated plate is sim...

متن کامل

The Effect of Chronic Spinal Cord Injury on Ultrastructure of Epididymal Sperm in Rat

Purpose: The effects of chronic SCI on ultrastructure of spermatozoa aspirated from epididymis of rats. Materials and Methods: 45 adults Wistar rats were divided into 3 groups of SCI, control and sham. Following laminectomy, SCI was induced with a 15g weight dropped from a distance of 10 cm, onto exposed dura matter at T10 level. Sham group underwent laminectomy of T10 only, while control was n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell motility and the cytoskeleton

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 1996